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Abstract. We propose a bridge between the theory of exactly solvable models and the
investigation of traffic flow. By choosing the activities in an appropriate way, the dimer
configurations of the Kasteleyn model on a hexagonal lattice can be interpreted as spacetime
trajectories of cars. This then allows for a calculation of the flow-density relationship
(fundamental diagram). We further introduce a closely related cellular automaton model. This
model can be viewed as a variant of the Nagel–Schreckenberg model in which the cars do not
have a velocity memory. It is also exactly solvable and the fundamental diagram is calculated.

1. Introduction

In the past few years the investigation of traffic flow using cellular automata has become
quite popular (see e.g. [1] and references therein). In contrast to the hydrodynamical
description [2–4] this approach is microscopic in the sense that individual cars can be
distinguished in a similar way to the follow-the-leader models [5–7]. The simplicity of this
approach allows for a number of new applications which cannot be incorporated easily in the
more complex theories of traffic dynamics. Particularly, large-scale computer simulations
are now possible [8, 9] which are effective even in the case of complicated street networks.

In this paper we propose a different approach which uses methods from statistical
mechanics. It is well known that a number of exactly solvable models of statistical
mechanics have a graphical interpretation in terms of (closed) graphs. We suggest the
interpretation of such graphs as trajectories of cars in traffic. Using the known partition
function of an exactly solvable free-fermion model, the Kasteleyn dimer model on a
hexagonal lattice, we are then able to calculate the properties of the corresponding traffic
model. In this way we not only obtain information about the fundamental diagram (density
versus flow) but also about the correlation functions. Finally, we discuss the relation of this
model to the approach using cellular automata.

2. Kasteleyn model

Here we suggest and study a simple statistical two-dimensional lattice model, the
configurations of which can be mapped onto the trajectories of a discrete (stochastic) one-
dimensional traffic problem on a ring (‘Indianapolis situation’); see figure 1. Our traffic
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Figure 1. Representation of the hexagonal lattice as a decorated quadratic lattice (a), and its
mapping onto the square lattice (b). The encircled pairs of sites of the decorated lattice map on
a single site of the square lattice, the vertical (horizontal) dimers on the former lattice map onto
space (time) steps of the trajectories on the latter.

model has the following properties: (i) the cars do not collide, the minimum distance
between any two cars being not less than one lattice spacing; (ii) the velocities of the cars
are (in principle) unlimited. The principal difference between the cellular automaton models
and the present approach is that the statistical weights are ascribed globally to each allowed
set of trajectories, rather than determined locally by the transition probabilities from one
space configuration to another.

The statistical model is actually an interpretation of the dimer model on the hexagonal
lattice with anisotropic activities, which has been suggested by Kasteleyn [10] and studied
in a series of papers; see [11] and references therein. The hexagonal lattice we represent
as a decorated square lattice with two sites in each vertex shown by a circle in figure 1(a).
We consider the horizontal direction of the square lattice as the space axis and the vertical
one downwards as the time axis of the traffic problem as usual in traffic theory. The above
interpretation allows us to define a one-to-one mapping of each dimer configuration on the
decorated lattice, figure 1(a), onto a set of trajectories on the square lattice, figure 1(b).
Under that mapping the circles of the decorated lattice are mapped onto the sites of the
square lattice; a horizontal dimer on the decorated lattice corresponds to a unit space step
of some trajectory, and a vertical dimer corresponds to a unit time step. The fact that the
Kasteleyn model belongs to the class of free-fermion models ensures continuity and non-
intersection of the trajectories. The number of trajectories and the average velocity of the
cars are controlled by the activitiesx andt of the horizontal and vertical edges of the lattice,
respectively; the activity of the slanted edges in the circles, figure 1(a), is set to unity. The
statistical weight of each allowed set of trajectories is determined by the total number of
horizontal and vertical unit steps in it. Thus, the generating (or partition) function of the
model on a finite square lattice withL columns andM rows is given by

ZL,M(x, t) =
∑
{C}

xNx(C)tNt (C) . (1)

Here the summation runs over the set of all allowed dimer configurations on the hexagonal
lattice. For periodic boundary conditions, the solution of the Kasteleyn model in the
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thermodynamic limit is [11]

f∞ = lim
M,N→∞

1

ML
ln ZL,M(x, t) = 1

8π2

∫ 2π

0

∫ 2π

0
dα dβ ln |1 − teiα − xeiβ | . (2)

The phase diagram of the model has four regions in the plane 06 t < ∞, 0 6 x < ∞
[13], denoted here byA, B, C andD. The phase in regionA,

(x, t) ∈ A = {t > 1 + x} (3)

describes stopped, close-packed cars. There is a trivial empty phase in regionB,

(x, t) ∈ B = {x < 1, t < |1 − x|} (4)

and the phase inC

(x, t) ∈ C = {x > 1, t < |1 − x|} (5)

corresponds to the zero-density limit of cars moving at infinite speed. Normal trajectories
of cars at all intermediate densities exist in the region(x, t) ∈ D,

(x, t) ∈ D = {|1 − x| < t < |1 + x|} (6)

which motivates our interest only in that non-trivial case.
The integration overα in equation (2) can be easily performed by using the Jensen

formula [14]. In regionD the result is

f∞ = 1 ln(t) + 1

2π

∫ π

π1

dβ ln(1 − 2x cos(β) + x2) (7)

where

1 = 1

π
arccos

(
1 + x2 − t2

2x

)
. (8)

Let us now turn to the interpretation of the observables in our model. For a finite lattice
under periodic boundary conditions, the total numbers of steps in time and space can be
expressed as

Nt(C) = MNa(C) (9)

and

Nx(C) = LNa(C)w(C) (10)

whereNa is the number of automobiles in configurationC, and w(C) is the number of
windings of each trajectory in the periodic spatial direction. Therefore, the average density
of cars can be defined as

ρ(x, t) = 1

LM
〈Nt(C)〉 = t

∂

∂t
f∞(x, t) = 1(x, t) . (11)

The rigorous definition of the average velocityv of cars is given by the average value
of the ratio of space steps to time steps. However, as a first approximation we can assume

v = 〈Nx(C)〉
〈Nt(C)〉 . (12)

The numerator of the above ratio is obtained by differentiation of expression (7) with respect
to the activity of the space stepsx:

1

LM
〈Nx(C)〉 = x

∂

∂x
f∞(x, t) = 1

2
(1 − 1(x, t)) + sign(x − 1)

2
(1 − K(x, t)) . (13)
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Figure 2. The flow q(x, ρ) for different values of
x. Curves withx < 1 lie below the dotted line
(x = 1), curves withx > 1 above. The broken
line indicates the location of the maximum flow.

Here we have introduced the function

K(x, t) = 2

π
arctan

(
x + 1

|x − 1|

√
t2 − (1 − x)2

(1 + x)2 − t2

)
. (14)

To obtain the fundamental traffic flow–density diagram, we start with the definition of
the flow

q = vρ (15)

which, in combination with (11)–(13), gives

q(x, t) = 〈Nx(C)〉
LM

. (16)

The parametert plays an auxiliary role in our model and we will express it in terms of the
densityρ and activityx by using the relation1(x, t) = ρ, see (8) and (11). Thus, for the
traffic flow q(x, ρ) we obtain the following explicit expression:

q(x, ρ) = 1 − ρ

2
+ sign(x − 1)

2π

[
π − arccos

(
(x − 1)2(1 + cos(πρ))

x2 − 2x cos(πρ) + 1
− 1

)]
. (17)

Note that the variablex controls the average velocityvm of a single car. Indeed, by
considering configurations with only one trajectory, one can readily see thatvm = x/t .

The flow–density diagram at different fixed values ofx is shown in figure 2. A
remarkable feature of that diagram is the existence of two qualitatively different traffic-
flow regimes. Forx < 1 the flow reaches its maximum value

q(x, ρmax) = 1
2 − ρmax (18)

at the density

ρmax = 1

π
arccos(x) . (19)

In the other regime, whenx > 1, the traffic flow decreases monotonically with the increase
of ρ, from q(x, 0) = 1 to q(x, 1) = 0.

The phenomenon of self-organized criticality in the transport flow is clearly manifested
in the asymptotic behaviour of the pair correlation functions both in space and time.
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Obviously, the correlations between time and space steps of the trajectories in our model
correspond to dimer–dimer correlations in the original model of close-packed dimers on
the hexagonal lattice. The latter can be obtained and studied by using the technique of
Fisher and Stephenson [12]. In the transport-flow problem one is interested mainly in the
correlations between cars passing a fixed position in space at two moments in time, say,
t = 0 and t = T , as well as in the correlations between cars at the same moment in
time, but at a distanceR apart. The former case corresponds to the correlation function
for two vertical dimers in the same row of the decorated square lattice, and the latter case
corresponds to two horizontal dimers in the same column, see figure 1. Due to the symmetry
of the problem, here we give the expression for the temporal correlations only. By using
the method of [12], for the correlation functionKt(T ) one obtains in the thermodynamic
limit

Kt(T ) = −
∣∣∣∣ 1

(2π)2

∫ 2π

0

∫ 2π

0
dα dβ

eiα+iTβ

1 − teiα − xeiβ

∣∣∣∣2

. (20)

The simple analytical structure of the integrand in the complex plane permits the exact
evaluation of the above integral:

Kt(T ) = −sin2(πT 1′)
(πxT )2

. (21)

Here1′ ≡ 1′(x, t) = 1(t, x).
Similarly, for the spatial correlation function we obtain the asymptotic behaviour

Ks(R) ∝ R−2 at largeR. The power-law decay of both temporal and spatial correlation
functions reflects the phenomenon of self-organized criticality in our model. However, the
following questions arise. (i) Are the obtained critical exponents universal for the class of
statistical models of traffic? (ii) Will they be the same for the cellular automaton models?

3. Comparison with the cellular automaton approach

The interpretation of the above results as a cellular automaton with local rules is not
straightforward. The summation over all allowed dimer configurations corresponds to a
global analysis of the statistics and there are no simple probabilisticlocal rules yielding
the same distribution as the partition function (1). But it is possible to define a model with
very similar properties as is shown in the following.

Consider a probabilistic process according to the following rules. One time step consists
of an update of the positions of all cars in a parallel way. If a car hasn empty sites in front
of it (next car atn + 1) there are at mostn partial movements of one site possible for this
car. The decision of how far the car finally moves depends on a series of random numbers
yielding with probabilityp a ‘1’ and with q = 1 − p a ‘0’. The car moves as long as 1’s
are chosen. When a 0 occurs the movement stops until, in the next time step, this process
starts anew. So if the first chosen random number is a 0 the car does not move at all. If
the series hasl succeeding 1’s the car ends up at thelth site (possibly directly behind the
car ahead if it does not move itself in the same time step).

An important feature of these rules is that no memory for the velocity is needed. On
the other hand this can lead to unphysical features through enormous velocity fluctuations
from one time step to the next. Nevertheless, one can define a mean maximum velocity of
a free driving car according to the rules just mentioned which is simply given byv̄ = p/q.
This is the average distance a single car moves on a free road without other cars.
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In the following we show that the mean-field ansatz already gives the exact stationary
state of the cellular automaton for any system of sizeL and number of carsN . The exactness
of the mean-field solution has the consequence, in this case, that all possible states of the
system are equally probable.

We characterize a state of the system at timet only by the numberdi (i = 1, . . . , N)
of free sites between cari and cari + 1 since no other quantities are needed. For the ring
geometry this means thatdN is the distance between carN and car 1. It is then rather
simple to write down the master equation for the time evolution of the system

Pt+1({di}) =
dN∑

s1=0

d1∑
s2=0

· · ·
dN−1∑
sN =0

N∏
i=0

[psi (δdi ,si+1 + (1 − δdi ,si+1)q)]Pt({di − si + si+1}) . (22)

The variablesi denotes the distance cari drives in the timestept → t + 1. The
Kroneckerδ takes into account the fact that if cari ends up directly behind the next car
i +1 (i.e. si+1 = di) it does not have the ‘deceleration’ factorq. This is the main difference
to the dimer model where one has this factorq in any case (i.e.t in the other notation).

The static solution of (22) is simply given byP({di}) ≡ 1
/(

L

N

)
, i.e. asymptotically all

probabilities are equal. This can be seen easily from

1 =
dN∑

s1=0

d1∑
s2=0

· · ·
dN−1∑
sN =0

N∏
i=0

[psi (δdi ,si+1 + (1 − δdi ,si+1)q)] (23)

which follows from the identity

1 =
di−1∑
si

psi (δi−1,si
+ (1 − δdi−1,si

)q) (24)

after interchanging product and sums. The probabilityfn for a car to drive exactlyn sites
in the thermodynamic limitN → ∞ is given by

fn = (1 − ρ)npn[(1 − ρ)q + ρ] (25)

since a car can stop by chance or when another car blocks it. For the flow in theCA one
then obtains

qCA(p, ρ) = ρ

∞∑
n=1

nfn = ρ(1 − ρ)p

1 − (1 − ρ)p
= ρ(1 − ρ)v̄

1 + ρv̄
. (26)

To compare the flow (26) of the cellular automaton with the flow (18), we have to
rescale (18) with a factor 2(q(x, ρ) → 2q(x, ρ)). To illustrate this, we consider the
limiting case of low car density andx → 1. The dotted line in figure 2 tends to 0.5 when
ρ → 0. This reflects the fact that each horizontal line of the lattice can be occupied by
the trajectory of the single car or be empty with equal probability. In the cellular automata
approach, the motion with infinite velocity is forbidden and the casex → 1 corresponds to
the maximal occupation of all horizontal bonds. This leads to the shift of the dotted line in
figure 2 to the diagonal of the curve.

After the rescaling the maximum of both flows lie on the curve 1− 2ρ. Therefore
we can find the relation between the parametersp andx in the two models by identifying
curves which have the same maximum. This yields the identification

p = 1 − (2/π) arccosx

(1 − (1/π) arccosx)2
. (27)

Figure 4 showsqCA(p, ρ) andq(x, ρ) for p = 3
4 andx = 1

2. Although the slopes for small
and high densities are different the overall agreement of the two curves is very good.
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Figure 3. The flowqCA(p, ρ) for different values ofp. Figure 4. Comparison ofqCA(p, ρ) (dotted curve) and
2q(x, ρ) for p = 3

4 andx = 1
2 .

In conclusion we considered the Kasteleyn model as a model of traffic flow. This
model allows us to establish a bridge between the theory of exactly solvable models and the
investigation of traffic flow by cellular automata. By choosing the activities in an appropriate
way it is possible to interpret the dimer configurations as spacetime trajectories of vehicles.
The Kasteleyn model can be related to a modified Nagel–Schreckenberg model in which
the cars do not have a velocity memory. The fundamental diagram of this modifiedCA

can be obtained exactly as well and shows good agreement with the fundamental diagram
obtained for the Kasteleyn model.
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